T cells are key players in the immune system with the ability to detect and eliminate infected cells and tumors. We study molecular regulations underlying T cell activation and anti-tumor activity. For this, we use a wide range of technologies including mass spectrometry-based proteomics, functional genomics, and microfluidics-based systems. Our projects aim to provide detailed insights into T cell functionality that can be translated into the clinic to improve anti-cancer immunotherapies.
We are particularly interested in the immune response to liver cancer. T cells that infiltrate liver tumors are often exhausted and do not work properly. To potentially increase their functionality, we study the underlying regulations by systematically analyzing tumor-infiltrating T cells with high-resolution mass spectrometry and functional assays.
In a related project, we develop workflows to efficiently isolate T cells that recognize liver tumor antigens. Tumor-reactive T cells can be grown to large numbers and used for adoptive T cell therapies, a highly personalized form of cancer therapy. In collaboration with the research group of Andrew deMello (ETH Zürich), we use droplet-based microfluidics systems to manipulate and analyze single T cells in a high-throughput format.